Scaling of scoring rules
A talk about scaling of scoring rules (model evaluation)
Abstract
Averages of proper scoring rules are often used to rank probabilistic forecasts. In many cases, the individual observations and their predictive distributions in these averages have variable scale (variance). I will show that some of the most popular proper scoring rules, such as the continuous ranked probability score (CRPS), up-weight observations with large uncertainty which can lead to unintuitive rankings. We have developed a new scoring rule, scaled CRPS (SCRPS), this new proper scoring rule is locally scale invariant and therefore works in the case of varying uncertainty. I will demostrate this how this affects model selection through parameter estimation in spatial statitics.